# SIEMENS



# SAPHIR Modbus for ACX36, slave mode IV Produkt LB10 Application v1.2x

**Engineering Guide** 

Siemens Building Technologies HVAC Products

# Contents

| 1   | About this Document4            |
|-----|---------------------------------|
| 1.1 | Foreword4                       |
| 1.2 | Notes on Use4                   |
| 1.3 | Symbols and Abbreviations4      |
| 1.4 | Revision History4               |
| 2   | General5                        |
| 2.1 | The Modbus protocol5            |
| 2.2 | RS485 networks                  |
| 2.3 | Tools6                          |
| 2.4 | Troubleshooting, Tips           |
| 3   | Connection and Configuration7   |
| 3.1 | General7                        |
| 3.2 | Connection                      |
| 3.3 | Configure7                      |
| 4   | Register map and function codes |
| 4.1 | Register map8                   |
| 4.2 | Function codes                  |
| 5   | Reference addresses9            |
| 5.1 | General9                        |
| 5.2 | Coil Status                     |
| 5.3 | Input Status                    |
| 5.4 | Input Register11                |
| 5.5 | Holding Register12              |

# **1** About this Document

### 1.1 Foreword

| Purpose | The purpose of this document is to provide users with a quick and simple means to |
|---------|-----------------------------------------------------------------------------------|
|         | familiarize themselves with the configuration and use of Modbus on the Saphir.    |

### 1.2 Notes on Use

Target audience

**Further information** 

This document is intended for developers who perform commissioning of the Modbus communication.

For operation and planning of the SAPHIR OEM primary controller, please refer to additional documents, such as:

SAPHIR ACX36..., Device Datasheet (Order No: CE2Q3226en)

• SAPHIR ACX36..., Basic Documentation (No: CE2P3226en)

You can order this and other publications from Siemens Building Technologies, HVAC Products.

### 1.3 Symbols and Abbreviations



Passages introduced by this symbol indicate a warning to help prevent incorrect operation.



Passages introduced by this symbol indicate that the text must be read with special attention.



Paragraphs with this symbol provide tips.

### Abbreviations

| Abbreviation | Description                                                   |  |
|--------------|---------------------------------------------------------------|--|
| RTU          | Remote Terminal Unit                                          |  |
| TCP/IP       | Transmission Control Protocol, e.g. Ethernet/Internet         |  |
| Gateway      | A device for transfer data between different kind of networks |  |
| LSB          | Least Significant Bit                                         |  |
| MSB          | Most Significant Bit                                          |  |

### 1.4 Revision History

| Revision | Date       | Author          | Remark        |
|----------|------------|-----------------|---------------|
| 1.0      | 2006-04-18 | Michael Sjöberg | First release |

|                                        | 2 General                                                                                                                                                                                                                                                                                                           |  |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                        | 2.1 The Modbus protocol                                                                                                                                                                                                                                                                                             |  |  |  |
|                                        | The following section provides only a brief overview of the Modbus protocol.<br>For the full specification, refer to "Modicon Modbus Protocol Reference Guide<br>PI-MBUS-300 Rev. J".                                                                                                                               |  |  |  |
| Master/slave protocol                  | The Modbus is a master/slave protocol. By definition, this means that a Modbus network contains one, and only one, master and at least one slave.                                                                                                                                                                   |  |  |  |
| Transactions on the<br>Modbus          | The Modbus master starts the transactions on the network with a slave query. The slave either responds positively with the requested service ( <i>response</i> ) or transmits an "exception message". In the remainder of this document, these query/response sequences are also referred to as "Modbus telegrams". |  |  |  |
| Function codes                         | The type of transaction is defined by the function code transmitted in the Modbus telegrams. A function code defines the following:                                                                                                                                                                                 |  |  |  |
|                                        | <ul> <li>Structure of the telegram, query and response</li> <li>Direction of data transmission (master → slave or slave → master)</li> <li>Data format of data point (bit or 16-bit register)</li> </ul>                                                                                                            |  |  |  |
| Transmission modes                     | The Modbus protocol defines two alternative serial transmission modes:<br>These modes have the following characteristics:                                                                                                                                                                                           |  |  |  |
|                                        | <ul> <li>RTU (Remote Terminal Unit) mode</li> <li>Binary-coded data</li> <li>Start and end of telegrams marked by timed pauses (a "silent interval") between the characters transmitted.</li> <li>Check sum algorithm: CRC (Cyclic Redundancy Check)</li> </ul>                                                     |  |  |  |
|                                        | <ul> <li>ASCII mode</li> <li>Data in hexadecimal notation</li> <li>Beginning and end of telegrams marked by start and end characters.</li> <li>Check sum algorithm: LRC (Longitudinal Redundancy Check)</li> </ul>                                                                                                  |  |  |  |
| Telegrams with<br>multiple data points | Certain types of Modbus transactions permit the transmission of a variable number of Modbus data points (bit or 16-bit register) in a single telegram.                                                                                                                                                              |  |  |  |
| Modbus TCP<br>Ethernet                 | A Modbus TCP/RTU gateway can be used to connect a Modbus/TCP master to one or several Saphir. The Modbus TCP/RTU gateway will act as a Modbus/TCP salve on a Ethernet network, and transform the queries to the serial Modbus network and back again.                                                               |  |  |  |
|                                        | Modbus RTU, RS485 Gateway Modbus TCP, Ethernet Master                                                                                                                                                                                                                                                               |  |  |  |

### 2.2 RS485 networks

RS485 is a balanced line, half-duplex transmission system that meets the requirements for a truly multi-point communications network, and the standard specifies up to 32 drivers and 32 receivers on a single (2-wire) bus. Half-duplex data transmission means that data can be transmitted in both directions on a signal carrier, but not at the same time.

### Specifications

### RS485

| N3403                                                         |                |
|---------------------------------------------------------------|----------------|
| Mode of Operation                                             | Differential   |
| Total Number of Drivers and Receivers on One Line (One        | 32 Driver      |
| driver active at a time for RS485 networks)                   | 32 Recvr       |
| Maximum Cable Length                                          | 1200 meter     |
| Maximum Data Rate (10m – 1200m)                               | 10Mb/s-100Kb/s |
| Maximum Driver Output Voltage                                 | -7V to +12V    |
| Driver Output Signal Level (Loaded Min.)                      | +/-1.5V        |
| Driver Output Signal Level (Unloaded Max)                     | +/-6V          |
| Driver Load Impedance (Ohms)                                  | 54             |
| Max. Driver Current in High Z State, Power On                 | +/-100uA       |
| Max. Driver Current in High Z State, Power Off                | +/-100uA       |
| Slew Rate (Max.)                                              | N/A            |
| Receiver Input Voltage Range                                  | -7V to +12V    |
| Receiver Input Sensitivity                                    | +/-200mV       |
| Receiver Input Resistance (Ohms), (1 Standard Load for RS485) | >=12k          |
|                                                               |                |

### 2.3 Tools



Modbus slave devices e.g. Saphir can be tested with several Modbus master simulation tools, like "Modbus Poll" or "ModScan", from a computer. Modbus Poll can be downloaded from <u>www.modbustools.com</u>.

A RS485/RS232 converter or a Modbus RTU/TCP gateway may be needed to connect to a computer.

### 2.4 Troubleshooting, Tips

- The slave address must be unique in the network, valid addresses are from1-247.
  Only reference addresses that are generated can be read/write, see chapter 5 for
  - Only reference addresses that are generated can be read/write, see chapter 5 for more information about the specific application.
  - Baudrate, Parity and Stopbits must match the network and the Master.
  - The 2-wire bus is NOT interchangeable and must be connected correctly.
  - In case of long distance and/or high Baudrate, please consider end of line resistors like 120 Ohm on both sides (according to RS485 rules).

Modbus Communication error

### RS485 network

### **Connection and Configuration** 3

#### 3.1 General

The RS485 interface is present on all device types of ACX36.

#### 3.2 Connection

Follow the instructions below to connect to the RS485 interface.



Attach communication cable to connector A+ and B-1.

| Technical data | RS485 / Modbus RTU                  | Data                        |
|----------------|-------------------------------------|-----------------------------|
|                | 2-wire bus connection, twisted pair | A+, B-, NOT interchangeable |
|                | Bus connection / electronics        | Non-floating                |
|                | Bus termination (internal)          | 390/220/390 Ohm             |
|                |                                     |                             |

### 3.3 Configure

Follow the instructions below to configure RS485 and Modbus.

- 1. Commissioning unit with all settings before starting to configure Modbus.
- 2. Log in with password 2000.
- Navigate to menu "Systemparameter Communication Modbus configuration".
- 3. Set the slave address for the device. (1-247, Must be unique).
- Set Baudrate for RS485 (300-19200) 4.
- 5. Set Parity for RS485 (None, Even, Odd)
- Set number of Stopbit for RS485 (1 or 2) 6.
- 7. Set the "Configuration done" to "Yes", to restart the Saphir.

# 4 Register map and function codes

### 4.1 Register map

Modbus registers are organized into reference types identified by the leading number of the reference address:

The "x" following the leading character represents a four-digit reference address.

### **Modbus Data formats**

| ModbusType          | Reference | Description (refer to a Master device)                                                                                                                                                |
|---------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Coil Status         | 0xxxx     | Read/Write Discrete Outputs or Coils.<br>A 0x reference address is used to drive output data<br>to a digital 1-bit output channel.                                                    |
| Input Status        | 1xxxx     | Read Discrete Inputs.<br>The 1-bit status of a 1x reference address is<br>controlled by the corresponding digital input channel.                                                      |
| Input Register      | Зхххх     | Read Input Registers.<br>A 3x reference register contains a 16-bit number<br>received from an external source—e.g. an analog<br>signal.                                               |
| Holding<br>Register | 4xxxx     | Read/Write Output or Holding Registers.<br>A 4x register is used to store 16-bits of numerical<br>data (binary or decimal), or to send the data from the<br>CPU to an output channel. |

The leading character is generally implied by the function code and omitted from the address specified for a given function. The leading character also identifies the I/O data type.

### 4.2 Function codes

The functions below are used to access the registers outlined in the register map of the module for sending and receiving data.

| Function<br>Code | Modbus function           | Modbus master application |         |
|------------------|---------------------------|---------------------------|---------|
| 01               | Read Coil Status          | Read multiple DOs         | (0xAdr) |
| 02               | Read Input Status         | Read multiple DIs         | (1xAdr) |
| 03               | Read Holding Registers    | Read multiple AOs         | (4xAdr) |
| 04               | Read Input Registers      | Read multiple Als         | (3xAdr) |
| 05               | Force Single Coil         | Write single DO           | (0xAdr) |
| 06               | Preset Single Register    | Write single AO           | (4xAdr) |
| 15               | Force Multiple Coils      | Write multiple DOs        | (0xAdr) |
| 16               | Preset Multiple Registers | Write multiple AOs        | (4xAdr) |

When the slave device responds to the master, it uses the function code field to indicate either a normal (error-free) response, or that some kind of error has occurred (an exception response).

Supported Modbus commands

|                                    | 5<br>5.1                          | Reference a<br>General                                                                | addresses                                                                                                                                                                                                                                                                     |     |
|------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                    | This cha                          | pter describes the refere                                                             | ence addresses used in the application.                                                                                                                                                                                                                                       |     |
| Used addresses                     | they are                          |                                                                                       | 01-0099 are generated and can be accessed even if<br>e it is possible to Force/Preset Multiple Coils/Register<br>vo reference addresses.                                                                                                                                      | S   |
| $\overline{\mathbb{A}}$            |                                   | Read/Write any address<br>se and the communicat                                       | ses above 0099. If so there will be an exception<br>tion fails.                                                                                                                                                                                                               |     |
| Presentation                       | - 16 bit s<br>- 1 bit sta         |                                                                                       |                                                                                                                                                                                                                                                                               |     |
| Example                            |                                   | alue is 215 and is then pr<br>010111 LSB                                              | resented by a 16 bit register binary as:                                                                                                                                                                                                                                      |     |
|                                    |                                   | bit register "BMS override<br>000110 LSB                                              | e timeprogram" will be used and set binary to state 6:                                                                                                                                                                                                                        |     |
| Decimals                           |                                   |                                                                                       | register to handle real values, a factor must be used or 1 decimal, a factor 100 for 2 decimals                                                                                                                                                                               | to  |
| $\triangle$                        |                                   | perature values and set<br>/multiplied with 10 in th                                  | tpoints have a factor 10 and must then be<br>ne Master device.                                                                                                                                                                                                                |     |
| Example                            | It will the                       |                                                                                       | re is 20.6 °C and is then multiplied with 10 in the Saph<br>at Modbus and must be divided by 10 in the Master                                                                                                                                                                 | ir. |
|                                    |                                   | o have it presented as 2                                                              | 21.5 °C from the Master device it must be multiplied<br>215 at Modbus. The saphir then divide by 10 to have                                                                                                                                                                   |     |
| Setpoints<br>Double reference addr | feedback<br>are char<br>are there | k on the Holding register<br>nged locally in the Saphir<br>efore presented at the Inj | addresses. The reason for that is that there are no<br>(4xAdr) on startup after power failure or if the setpoin<br>r from the HMI, the actual setpoint that the Saphir use<br>put register (3xAdr). If the setpoint is changed over<br>or and the Input register are updated. |     |
|                                    | The Hold<br>easier ad             |                                                                                       | the Input register (3xAdr) use the same reference fo                                                                                                                                                                                                                          | r   |
| Example                            | Heating<br>Flow set               | setpoint comfort<br>point                                                             | 4x0001 and 3x0001<br>4x0010 and 3x0010                                                                                                                                                                                                                                        |     |

### 5.2 Coil Status

| Address | Description  | Values / Unit | Remark                 |
|---------|--------------|---------------|------------------------|
| 0x0001  | Reset Alarms | 0-1           | Manually set back to 0 |
|         |              |               |                        |

## 5.3 Input Status

| Address          | Description                        | Values / Unit | Remark |
|------------------|------------------------------------|---------------|--------|
| 1x0001           | Not used                           | 0             |        |
|                  |                                    |               |        |
| 1x0002           | Alarm class A active               | 0-1           |        |
| 1x0003           | Alarm class B active               | 0-1           |        |
| 1x0004           | Alarm class C active               | 0-1           |        |
| 1x0005           | Temperature deviation alarm        | 0-1           |        |
| 1x0006           | Fire / Smoke alarm                 | 0-1           |        |
| 1x0007           | HRC alarm                          | 0-1           |        |
| 1x0008           | Heating pump / Heating alarm       | 0-1           |        |
| 1x0009           | Cooling pump / Cooling alarm       | 0-1           |        |
| 1x0010           | AUX alarm                          | 0-1           |        |
| 1x0011           | Supply fan alarm                   | 0-1           |        |
| 1x0012           | Exhaust fan alarm                  | 0-1           |        |
| 1x0014           | Frost protection alarm             | 0-1           |        |
| 1x0015           | HRC frost alarm                    | 0-1           |        |
| 1x0016           | HRC pressure guard alarm           | 0-1           |        |
| 1x0017           | HRC efficiency alarm               | 0-1           |        |
| 1x0018           | Unit override alarm                | 0-1           |        |
| 1x0019           | Filter alarm                       | 0-1           |        |
| 1x0020           | Room unit alarm                    | 0-1           |        |
| 1x0021           | Room / Exhaust sensor alarm        | 0-1           |        |
| 1x0022           | Out door sensor alarm              | 0-1           |        |
| 1x0023           | Supply air sensor alarm            | 0-1           |        |
| 1x0024           | Frost sensor alarm                 | 0-1           |        |
| 1x0025           | Multifunction sensor 1 alarm       | 0-1           |        |
| 1x0026           | Multifunction sensor 2 alarm       | 0-1           |        |
| 1x0020           | Runtime alarm                      | 0-1           |        |
| 1x0028           | Smoke damper alarm                 | 0-1           |        |
| 1X0020           |                                    | 0-1           |        |
| 1x0033           | Heating pump / Electrical heater   | 0-1           |        |
| 1x0034           | Cooling pump / DX Step 1           | 0-1           |        |
| 1x0035           | Out door damper                    | 0-1           |        |
| 1x0036           | Alarm class A output               | 0-1           |        |
| 1x0037           | Alarm class B output               | 0-1           |        |
| 1x0038           | Smoke damper                       | 0-1           |        |
| 1x0039           | Cooling DX Step 2                  | 0-1           |        |
| 1x0030           | Supply fan Off                     | 0-1           |        |
| 1x0040<br>1x0041 | Supply fan Step 1                  | 0-1           |        |
| 1x0041<br>1x0042 | Supply fan Step 1                  | 0-1           |        |
| 1x0042           | Exhaust fan Off                    | 0-1           |        |
| 1x0043           | Exhaust fan Step 1                 | 0-1           |        |
| 1x0044<br>1x0045 | Exhaust fan Step 1                 | 0-1           |        |
| 170040           |                                    | 0-1           | -      |
| 1x0052           | Service switch Stop                | 0-1           |        |
| 1x0052           | Control input / Timer input Stop   | 0-1           |        |
| 1x0056<br>1x0057 | Control input / Timer input Stop   | 0-1           |        |
|                  |                                    |               |        |
| 1x0058           | Control input / Timer input Step 2 | 0-1           |        |
| 1x0059           | Room control active                |               |        |
| 1x0060           | Supply control active              | 0-1           |        |
| 1x0061           | Exhaust air control active         | 0-1           |        |
| 1x0064           | Emergency stop                     | 0-1           |        |

# 5.4 Input Register

| Address | Description                                                                                                                                                               | Values / Unit   | Remark                   |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|
| 3x0001  | Basic setpoint temperature                                                                                                                                                | xx.y °C (fac10) | Feedback for Holding reg |
| 3x0003  | Dead zone cooling                                                                                                                                                         | xx.y °C (fac10) | Feedback for Holding reg |
| 3x0007  | Min setpoint supply air temperature,<br>cascade control                                                                                                                   | xx.y ℃ (fac10)  | Feedback for Holding reg |
| 3x0008  | Max setpoint supply air temperature, cascade control                                                                                                                      | xx.y ℃ (fac10)  | Feedback for Holding reg |
| 3x0015  | Setpoint fixed supply air lowspeed                                                                                                                                        | 0-100%          | Feedback for Holding reg |
| 3x0016  | Setpoint fixed supply air highspeed                                                                                                                                       | 0-100%          | Feedback for Holding reg |
| 3x0017  | Setpoint fixed exhaust air lowspeed                                                                                                                                       | 0-100%          | Feedback for Holding reg |
| 3x0018  | Setpoint fixed exhaust air highspeed                                                                                                                                      | 0-100%          | Feedback for Holding reg |
| 3x0020  | Actual heating setpoint for temperature control                                                                                                                           | xx.y ℃ (fac10)  |                          |
| 3x0021  | Actual cooling setpoint for temperature<br>control                                                                                                                        | xx.y °C (fac10) |                          |
| 3x0022  | Actual heating setpoint for supply air temperature control                                                                                                                | xx.y ℃ (fac10)  | When cascade control     |
| 3x0023  | Actual cooling setpoint for supply air temperature control                                                                                                                | xx.y ℃ (fac10)  | When cascade control     |
| 3x0024  | Presentation remote setpoint                                                                                                                                              | xx.y ℃ (fac10)  |                          |
| 3x0025  | Outdoor temperature                                                                                                                                                       | xx.y °C (fac10) |                          |
| 3x0026  | Supply air temperature                                                                                                                                                    | xx.y °C (fac10) |                          |
| 3x0027  | Frost temperature                                                                                                                                                         | xx.y °C (fac10) |                          |
| 3x0028  | Room/Exhaust air temperature                                                                                                                                              | xx.y ℃ (fac10)  |                          |
| 3x0029  | Multifunction temperature 2                                                                                                                                               | xx.y °C (fac10) |                          |
| 3x0030  | Multifunction temperature 1                                                                                                                                               | xx.y °C (fac10) |                          |
| 3x0039  | Room unit temperature                                                                                                                                                     | xx.y °C (fac10) |                          |
| 3x0040  | Analog output Heating                                                                                                                                                     | 0-100%          |                          |
| 3x0041  | Analog output Cooling                                                                                                                                                     | 0-100%          |                          |
| 3x0042  | Analog output Heat recovery                                                                                                                                               | 0-100%          |                          |
| 3x0043  | Actual HRC efficiency                                                                                                                                                     | 0-100%          |                          |
| 3x0044  | Frequency converter Supply fan                                                                                                                                            | 0-100%          |                          |
| 3x0045  | Frequency converter Exhaust fan                                                                                                                                           | 0-100%          |                          |
| 3x0050  | Actual operation mode<br>0 = Off, 1 = Step 1, 2 = Step 2<br>3 = Undefined,<br>4 = Testtemp, 5 = Nightpurge<br>6 = Unoccupied, 7 = Startup, 8 = Overrun<br>9 = Damper kick | 0-9             |                          |
| 3x0051  | Actual fan mode<br>0 = Off, 1 = Step 1, 2 = Step 2                                                                                                                        | 0-2             |                          |

# 5.5 Holding Register

| Address | Description                                                                    | Values / Unit   | Remark |
|---------|--------------------------------------------------------------------------------|-----------------|--------|
| 4x0001  | Basic setpoint temperature                                                     | xx.y °C (fac10) |        |
| 4x0003  | Dead zone cooling                                                              | xx.y °C (fac10) |        |
| 4x0007  | Min setpoint supply air temperature, cascade control                           | xx.y °C (fac10) |        |
| 4x0008  | Max setpoint supply air temperature, cascade control                           | xx.y °C (fac10) |        |
|         |                                                                                |                 |        |
| 4x0015  | Setpoint fixed supply air lowspeed                                             | 0-100%          |        |
| 4x0016  | Setpoint fixed supply air highspeed                                            | 0-100%          |        |
| 3x0017  | Setpoint fixed exhaust air lowspeed                                            | 0-100%          |        |
| 4x0018  | Setpoint fixed exhaust air highspeed                                           | 0-100%          |        |
| 4x0050  | BMS override timeprogram<br>0 = Internal TSP, 1= Off, 2 = Step 1<br>3 = Step 2 | 0-3             |        |

# Index

### A

| Abbreviations4<br>About this document4 |
|----------------------------------------|
| <b>C</b><br>Configure7<br>Connect7     |
| F<br>Function codes8                   |
| G General introduction5                |
| M<br>Modbus data formats8              |

### R

| Reference addresses |   |
|---------------------|---|
| Coil status         |   |
| General             |   |
| Holding register    |   |
| Input register      |   |
| Input status        |   |
| Register map        |   |
| RS485 specification | 6 |
| S                   |   |
| Software            |   |

### т

| 1               |   |
|-----------------|---|
| Tools           | 6 |
| Troubleshooting | 6 |

Symbols......4

Siemens Building Technologies HVAC Products Elektronvägen 4 SE-141 87 HUDDINGE Tel. 08-578 410 00 Fax http://www.sibt.se/ © 2006 Siemens AB, HVAC Products Subject to alteration